Effect of *Pasteuria penetrans* against *Meloidogyne* spp., on peanut cultivars

A.A. Mokbel

Department of Plant Pathology, Faculty of Agriculture, Alexandria University, Alexandria, Egypt Current address: Department of Biology, Faculty of Science, Jazan University, Kingdom of Saudi Arabia

Corresponding author email: Dr.Mokbel_71@yahoo.com

Abstract

Twelve phytoparasitic nematode genera were found infected or associated with the rhizosphere of peanut plants. Meloidogyne arenaria was the most common nematode in all collected soil samples followed by Tylenchorhynchus spp., Helicotylenchus spp., M. javanica and Pratylenchus penetrans. All tested peanut cultivars were resistant to M. incognita race 2 and moderately resistant to M. javanica. Whereas, peanut cvs. Balady, Ismailia 1 and Giza 6 were found highly susceptible to M. arenaria race 1 and Giza 4 and Giza 5 cvs. were susceptible. The suppressive efficacy of using three isolates of Pasteuria penetrans (Pp) against M. arenaria race 1 infected peanut was tested through two microplot experiments during two growing seasons 2011-12. Treatments in 1st season with two concentrations of the three mixed Pp isolates caused the highest reduction of 74.8-86.9% in number of nematode root galls, egg-masses/root system and number of $J_2/250 \text{ cm}^3$ soil compared with any single Pp isolate application. Meanwhile, all treatments in 2^{nd} season with both concentrations of all Pp isolates either alone or as a mixed isolates resulted in 65.7-94.7% reduction in all nematode parameters. Treatments with high concentration of all Pp isolates either alone or as mixed resulted 61.4-72.2% encumbered J₂ in the 1st season and increased to 93.2-97.9% in the 2nd season. Treatments with two concentrations of mixed isolates and P_PT isolate resulted in a significant increase of 51.7-77.0% in dry weights of shoot and root systems and number of peanut pods/plant, followed by treatments with the same concentrations of PpB and PpG isolates, which showed 32.7-48.5% increase. Number of bacterial nodules/root system was significantly increased with Pp treatments in both seasons. However, numbers of adherent endospores on J_2 cuticle were ranged 3.6-9.4 and 6.2-11.4 endospore/ J_2 in the 1st and 2nd season, respectively. High *Pp* concentrations resulted in the highest numbers of adherent endospores.

Keywords: Pasteuria penetrans, Meloidogyne, Tylenchorhynchus, Helicotylenchus, Pratylenchus, peanut

Peanut Arachis hypogaea L. is considered one of the important food crops produced in many subtropical and tropical countries and a high value cash crop for small and large growers alike. It was listed as one of the twenty crop plants that stand between man and starvation (Wittwer, 1981). In Egypt, cultivated area of peanut has increased especially in the new reclaimed sandy soil, as peanut area increased from 20000 hectare in year 2000 to about 70000 hectares in 2010 (Anonymous, 2011). Root-knot nematodes species are considered one of the most destructive pathogens attacking peanut worldwide. Root-knot nematode Meloidogyne arenaria (Neal) Chitwood was the most common species infecting peanut in many parts of the world (Dickson & De Waele, 2005; Korayem &

Bondok, 2013). In addition, *M. javanica* reported attacking peanuts in different parts of the world (Ibrahim & El-Saedy, 1976; Cetintas *et al.*, 2003). Infection with *M. arenaria* caused considerable yield losses in severely infested fields. Loss in peanut yield due to nematode pathogen was varied according to plant cultivar, nematode population density and environmental conditions. In Egypt it ranged from 20 to 90% (Korayem & Osman, 1994).

The gram-positive bacterium *Pasteuria penetrans* (Thorne) Sayre & Starr is an agent causes soil suppressive against root-knot nematodes (Kariuki & Dickson, 2007). *P. penetrans* is an endospore forming bacterium, which considered an important parasite of several *Meloidogyne*

species. The binding of a single endospore to a second-stage juvenile was sufficient to allow infection and propagation of the bacteria (Preston *et al.*, 2003). Second-stage juveniles of the nematode acquired endospores of the bacterium as they move through soil (Timper, 2009). Within bacterial species existing strains were specific to species within the genus *Meloidogyne* even down to the host race level of the nematode (Chen & Dickson, 1998).

The objectives of this work were to i) identify phytoparasitic nematodes infected and associated with peanut plants in Alexandria, El-Behera and Giza governorates; ii) evaluate the reactions of five peanut cvs., Balady, Ismailia 1, Giza 4, Giza 5 and Giza 6 to root-knot nematodes; *M. arenaria* race 1, *M. javanica* and *M. incognita* race 2 under greenhouse condition and iii) study the effects of three isolates of *P. penetrans* and the nematicide, Nemacure $10G^{\text{(B)}}$ on controlling *M. arenaria* race 1 infected peanut cv. Giza 6 through microplot experiments.

Materials and Methods

Survey: Survey study carried out during the period of 2011-12 to determine the occurrence of plant-parasitic nematodes associated with peanuts in 3 Egyptian governorates, Alexandria, El-Behera and Giza. A total of 293 composite soil and root samples of 1 kg soil each were collected from the rhizosphere of peanut plants, at a depth of 20-35 cm, 93 samples from Alexandria, 177 from El-Behera and 23 from Giza governorates. Root samples were collected by lifting the plants carefully with a shovel. All samples were kept in polyethylene bags, labeled and transferred directly to the laboratory for nematode extraction and identification. Roots were tap washed free of soil and examined for root galls and root-knot nematode infection. Adult females of root-knot nematodes were isolated from infected gall roots and identified to species level using the perineal patterns (Taylor & Sasser, 1978; Hartman & Sasser, 1985). Each soil sample was thoroughly mixed and a volume of 250 cm^3 soil sample was washed for nematode extraction by means of

Cobb's wet-sieving and centrifugal sugar flotation techniques (Ayoub, 1980). Nematode genera in the soil samples were identified and counted under the compound microscope using eelworm Peter's 1 ml counting slide. Identification of plant-parasitic nematodes was made according to the morphological characters of the adult and larval forms (Mai & Lyon, 1975). Frequency of occurrence of plant-parasitic nematodes and population densities/250 cm³ soil were determined and recorded.

Reactions of five peanut cultivars: The reactions of five peanut cvs., Balady, Ismailia 1, Giza 4, Giza 5 and Giza 6 to root-knot nematodes; M. arenaria race 1, M. javanica and M. incognita race 2 were studied under greenhouse condition. Seeds of peanut cultivars were sown in 30 cm diam. clay pots filled with steam sterilized sandy clay soil (2: 1, v: v). A total of 75 pots were used for this test. After emergence seedlings were thinned to two seedlings/pot. A week later, pots were inoculated with 2500 eggs and 2^{nd} stage juveniles (J₂)/pot of each root-knot nematode species. Treatments were replicated five times. Pots were arranged in a randomized complete block design. Plants were per recommendations. irrigated as The experiment was completed 60 days after nematode inoculation. Plants were harvested and roots were washed by running tap water. Galled roots were placed in an aqueous solution of phloxin B (0.15 g/l water) for 15 minutes to show nematode egg-masses. The behavior of each rootknot nematode species was recorded by number of galls and egg-masses. The gall and egg-masses range index was made according to Taylor & Sasser (1978) as 0 = resistant (R); 0-10 = moderately resistant (MR); 11-30 =moderately susceptible (MS); 31-100 = susceptible (S) and > 100 = highly susceptible (HS).

Root-knot nematodes culture: Egg-masses of root-knot nematodes *M. arenaria* race 1, *M. javanica* and *M. incognita* race 2 were obtained from the culture collection of Plant Pathology Department, Alexandria University (Alexandria, Egypt). Cultures of these root-knot nematode

species were established from single egg-masses of adult females, which identified using the morphological characteristics of the perineal patterns (Taylor & Sasser, 1978) and reared on tomato *Lycopersicon esculentum* Mill cv. Asala. The root-knot nematode eggs and J_2 were extracted from 8-10 wk-old infected tomato roots using sodium hypochlorite (NaOCI) solution as described by Hussey and Barker (1973).

Extraction and preparation of *P. penetrans* endospores concentration: Three Egyptian isolates of Pasteuria penetrans (Pp) were found parasitizing J₂ of root-knot nematode infected plants. The 1^{st} and $2^{nd} Pp$ isolates were obtained from encumbered J_2 infected banana (PpB) and tomato (PpT) roots, respectively at El-Behera governorate. The 3^{rd} isolate (*PpG*) was obtained from root-knot nematode infecting grapevine roots at Kafer El-Sheikh governorate. Isolates of Pp were separately cultured on juveniles of M. incognita infecting tomato plants cv. Asala in a greenhouse. Six weeks later, encumbered J₂ with *Pp* spores were collected by centrifugation attachment method (Hewlett & Dickson, 1994). Isolates were propagated on two-wk-old tomato seedlings. which inoculated with 1000 encumbered J₂. Two months later, infected root systems, which containing spores of each Pp isolate were air dried and ground in a laboratory grinder and pestle in order to release bacterial spores from root tissues. Resulting slurry passed through a 25- μ m sieve to eliminate root debris and soil particles (Stirling & White, 1982). Number of spores/ml for each *Pp* isolate was assessed using the haemocytometer slide and adjusted to a concentration of 3×10^6 or 6×10^6 spores/ml. The three mixed isolates (Mixed Pp) with the same tested concentrations were prepared by using a concentration of 1×10^6 or 2 $\times 10^{6}$ from each isolate and mixed together.

Microplot experiments

Effects of *P. penetrans* isolates and Nemacure against *M. arenaria*: A summer microplot study was conducted during the growing season of 2011 and repeated in season 2012 at the experimental microplot area, Dept. of Plant Pathology, Faculty

of Agriculture, Alexandria University, Alexandria to evaluate the suppressive effect of the three Ppisolates; PpB, PpT and PpG as compared with granular nematicide. Nemacure 10G[®] on peanut plants cv. Giza 6 cultivated in sandy loam soil with 2.5% organic matters, which naturally infested with M. arenaria race 1. Initial peanut root-knot nematode density (P_i) was estimated by collecting twenty five soil samples of 250 cm³ each, before peanut planting. The P_i was 3500 J₂/kg soil. Peanut seeds cv. Giza 6 were surface-sterilized using the fungicide, Topsin[®] M 70% WP (3g/kg seeds) 24 hrs before cultivation. Prior to peanut cultivation, the soil was plowed to a depth of 20 to 25 cm and shaped into rows of 15 to 20 cm height, 3 m long and 85 cm wide with 50 cm gap between rows. All rows were irrigated to full water holding capacity and forty peanut seeds were cultivated in hills (8 hills/row) spaced 35-cm apart within the rows as five seeds/hill. Seedlings were thinned to two seedlings/hill after 10 days. Two days later, peanut seedlings were treated with Pp isolates at a concentration of 3×10^6 or 6×10^6 spores/seedling for each Pp isolate and with mixed Pp isolates at the same concentrations. The granular nematicide, Nemacure 10G[®] was applied at the rate of 2.5 g/seedling. The same treatments were applied in the 2nd experiment (2012). All recommended agricultural practices were adopted throughout both growing seasons. Separate rows that received only sterilized distilled water were served as a check treatment. All treatments were replicated four times (4 rows) and were laid out in a randomized complete block design (RCBD). Peanut seeds were cultivated on 1st of May and harvested at optimum maturity in mid of September.

At harvest time, numbers of nematode root galls, egg-masses/root system, $J_2/250 \text{ cm}^3$ soil, number of encumbered $J_2/250 \text{ cm}^3$ soil and % of encumbered J₂ to the total numbers of $J_2/250 \text{ cm}^3$ soil, dry weights of shoot and root systems, number of peanut pods/plant and number of bacterial nodules/root system were determined. Also, one hundred encumbered J₂ of each treatment were selected to determine the average number of adhered spores/J₂ using a compound microscope at 400x magnification.

Statistical analysis: Data obtained were statistically analyzed using SAS software program (SAS Institute, 1997). Numbers of nematode root galls, egg-masses and $J_2/250$ cm³ soil were transformed to $\sqrt{X+1}$ before statistical analysis. Moreover, means differences were compared using revised LSD test at 5% level of probability.

Results

Survey: Data presented in Table (1) indicated the presence of 12 phytoparasitic nematode genera in soil samples of the surveyed peanut fields of Alexandria, El-Behera and Giza governorates. The root-knot nematode, *M. arenaria* was the most prevalent nematode in all collected soil samples with frequency of occurrence (FO) 40.9-66.7% and population densities (PD) 205-304 $J_2/250$ cm³ soil followed by the stunt nematode Tvlenchorhvnchus with 35.5-39.1% FO and cm³ PD 81-101 individuals/250 soil. Helicotylenchus, М. javanica and Pratylenchus penetrans were found in peanut soil and root samples with FO 8.6-17.8 % and 19-55 individuals/250 cm^3 soil. The genera Hemicycliophora, Heterodera and Trichodorus were found in soil samples with 8.6-13.4% FO and PD 19-26 individuals/250 cm³ soil. Meanwhile, *Criconema* spp., Criconemella Heterodera spp., spp., Hoplolaimus spp., Trichodorus spp., Tylenchus spp. and Xiphinema spp., were less common with FO 1.1-7.8% and PD 7-12 individuals/250 cm³ soil.

Table 1. Frequency of occurrence and population densities of phytoparasitic nematodes associated with	
peanut plants in Alexandria, El-Behera and Giza governorates.	

	Governorate and locality					
Nematode genera and	Alexandria	-Behera	Giza			
species	Borg El-Arab (93)	EL-Nobaria (87)	North EL-Tahrir (90)	Embaba (23)		
Criconema	1.1 , 9	-,-	-,-	1.4 , 6		
Criconemella	2.2,7	-,-	-,-	-,-		
Helicotylenchus	14.0 , 55	-,-	17.8,41	-,-		
Hemicycliophora	-,-	8.0,19	-,-	7.4 , 17		
Heterodera	4.3,12	-,-	-,-	3.2,11		
Hoplolaimus	-,-	2.3,11	-,-	-,-		
Meloidogyne arenaria	55.9 , 228	66.7, 304	46.7 , 205	40.9 , 246		
Meloidogyne javanica	-,-	-,-	12.2 , 26	13.4 , 23		
Pratylenchus penetrans	8.6,23	-,-	10.0 , 19	-,-		
Trichodorus	6.5,13	-,-	-,-	4.6 , 10		
Tylenchorhynchus	35.5, 101	39.1,81	-,-	-,-		
Tylenchus	4.3,10	5.7,12	7.8,8	6.2,11		
Xiphinema	-,-	2.3,7	-,-	-,-		

Reactions of five peanut cultivars: Data presented in Table (2) showed that all tested peanut cvs. were resistant to *M. incognita* race 2 and moderately resistant to *M. javanica*. On

the other hand, Balady, Ismailia 1 and Giza 6 were found highly susceptible to M. arenaria race 1, while Giza 4 and Giza 5 cvs. were found susceptible.

Cultivar	Root-knot nematode species	No. of galls/root	No. of egg- masses/root	Reaction
	M. arenaria	371	356	HS
Balady	M. javanica	6	2	MR
	M. incognita	0	0	R
	M. arenaria	236	225	HS
Ismailia 1	M. javanica	5	2	MR
	M. incognita	0	0	R
	M. arenaria	75	82	S
Giza 4	M. javanica	4	8	MR
	M. incognita	0	0	R
	M. arenaria	84	92	S
Giza 5	M. javanica	2	1	MR
	M. incognita	0	0	R
	M. arenaria	351	335	HS
Giza 6	M. javanica	7	3	MR
	M. incognita	0	0	R

Table 2. Reactions of peanut cultivars to root-knot nematodes; Meloidogy	ne arenaria race 1, M. javanica and
M. incognita race 2.	

Effects of *P. penetrans* isolates and Nemacure: Data presented in Table (3) showed that treatment with Nemacure 10G® resulted in the highest reduction of 96.2-99.9% in number of nematode root galls, egg-masses/root system and number of $J_2/250$ cm³ soil in both 1st and 2nd seasons. Also, results indicated that all Pp isolate treatments and the mixed Pp isolates with both tested concentrations reduced number of root galls, egg-masses/root system and number of $J_2/250 \text{ cm}^3$ soil in both microplot experiments of 2011 and 2012 with 44.9-94.7 % compared with the check treatment. Nematode parameters were significantly reduced with increasing Pp concentrations. Treatments of the 1st season with both tested concentrations of mixed Pp isolates caused reductions of 74.8-86.9% in number of nematode root galls, egg-masses/root system and number of $J_2/250$ cm³ soil. Meanwhile, treatments with both doses of PpT and PpG isolates and 6×10^6 spore/seedling of *Pp*B isolates

showed 50.0-73.7% reduction in number of nematode root galls, egg-masses/root system and number of $J_2/250$ cm³ soil, followed by treatment with 3×10^6 spore/seedling of *PpB* isolate, which caused a considerable reduction of 44.9-45.5%. In the 2nd season, all treatments with both tested doses of all Pp isolates either alone or as mixed isolates resulted in 65.7-94.7% reductions in number of root galls, egg-masses/root system and number of $J_2/250$ cm³ soil compared to the check treatment. Also, there is a significant difference between treatments in percentage of encumbered J_2 . Treatments with 6×10^6 spore/seedling of all Pp isolates either alone or as mixed isolates resulted in 61.4-72.2% encumbered J_2 in the 1^{st} season and increased to 93.2-97.9% in the 2nd Meanwhile, treatment with 3×10^6 season. spore/seedling of all Pp isolates either alone or as mixed isolates showed 39.3-63.9% and 66.6-95.4% encumbered J_2 in the 1st and 2nd seasons, respectively (Table 3).

<i>Pp</i> isolates & concentration (Spore/seedling)	No. of galls/root	Reduction (%)	No. of egg- masses/root	Reduction (%)	Number of J ₂ /250 cm ³ soil	Reduction (%)	No. of encumbered J ₂ /250 cm ³ soil	Reduction (%)
				1 st se	ason (2011)			
Check	966.4 a	-	959.4 a	-	2377.8 a	-	0.0	-
РрВ								
3×10 ⁶	532.4 b	44.9	517.8 b	46.0	1297.0 b	45.5	509.2 d	39.3
6×10 ⁶	312.6 d	67.7	304.4 de	68.3	1006.2 d	57.7	617.6 b	61.4
<i>Pp</i> G								
3×10 ⁶	378.4 c	60.8	357.6 c	62.7	1189.4 bc	50.0	565.8 c	47.6
6×10^{6}	308.4 d	68.1	301.6 d	68.6	1073.0 cd	54.9	673.6 a	62.8
<i>Pp</i> T								·
3×10 ⁶	333.6 cd	65.5	316.2 d	67.0	1136.6 c	52.2	595.6 bc	52.4
6×10^{6}	265.4 e	72.5	252.0 e	73.7	878.8 e	63.0	601.0 b	68.4
Mixed Pp isolates								
3×10^{6}	176.2 f	81.8	164.2 f	82.9	598.4 f	74.8	382.2 e	63.9
6×10^{6}	150.4 g	84.4	125.6 g	86.9	500.2 g	79.0	361.0 f	72.2
Nemacure 10G® (2	.5 g/seedling)							
	36.6 h	96.2	21.4 h	97.8	67.8 h	97.1	0.0	-
				2 nd season	(2012)			
Check	1369.6 a	-	1357.8 a	-	3285.8 a	-	0.0	-
РрВ								
3×10 ⁶	307.4 b	77.6	284.0 b	79.1	1116.0 b	66.0	742.8 ab	66.6
6×10^{6}	217.4 d	84.1	208.0 cd	84.7	761.8 c	76.8	710.0 b	93.2
<i>Pp</i> G								
3×10 ⁶	260.8 c	81.0	231.8 c	82.9	1128.6 b	65.7	769.6 a	68.2
6×10^{6}	221.4 d	83.8	204.8 d	84.9	811.4 c	75.3	779.0 a	96.0
РрТ								
3×10 ⁶	173.8 e	87.3	141.6 e	89.6	761.8 c	76.8	591.0 c	77.6
6×10 ⁶	97.6 fg	92.9	65.6 g	95.2	476.8 d	85.5	456.8 cd	95.8
Mixed <i>Pp</i> isolates								
3×10 ⁶	120.0 f	91.2	109.2 f	92.0	445.8 d	86.4	425.2 d	95.4
6×10 ⁶	84.2 g	93.9	71.6 g	94.7	256.2 e	92.2	250.8 e	97.9
Nemacure 10G [®] (2	.5 g/seedling)	1	-					
	4.8 h	99.6	1.6 h	99.9	12.0 f	99.5	0.0	-

Table 3. Effects of *P. penetrans* (*Pp*) isolates and Nemacure 10G[®] on *M. arenaria* infecting peanut plants cv. Giza 6 and number of encumbered J₂.

Values of each column followed by the same letter(s) are not significantly different at P = 0.05.

Data presented in Table (4) showed a significant increase in peanut growth parameters during both growing seasons. During the 1st and 2nd seasons, treatments with Nemacure 10G[®], two doses of 3×10^6 and 6×10^6 spore/seedling of mixed *Pp* isolates and *Pp*T

isolate resulted in significant increases of 51.7-77.0% in dry weights of shoot and root systems and number of pods/plant, followed by treatments with the same two doses of both PpB and PpG isolates showed 32.7-48.5% increase compared with check treatment.

<i>Pp</i> isolates & concentration (spore/seedling)	Root dry weight (g)	Increase (%)	Shoot dry weight (g)	Increase (%)	No. of pods/plant	Increase (%)
		1	st season (2011)			
Check	5.4 f		6.6 e		7.4 e	
PpB						
3×10^{6}	8.4 de	35.7	11.0 d	40.0	13.5 cd	45.2
6×10^{6}	9.1 de	40.7	12.1 d	45.5	14.2 cd	47.9
<i>Pp</i> G						
3×10 ⁶	8.1 e	33.3	11.8 d	44.1	12.1 d	38.8
6×10^{6}	9.8 d	44.9	12.7 d	48.0	12.7 cd	41.7
РрТ).o u	,	1217 0	1010	1217 00	,
3×10 ⁶	11.6 c	53.4	16.6 c	60.2	15.9 c	53.5
6×10^{6}	14.3 b	62.2	19.7 ab	66.5	18.7 bc	60.4
Mixed Pp isolates						
3×10 ⁶	14.3 b	62.2	18.6 bc	64.5	22.1 b	66.5
6×10 ⁶	14.9 b	63.8	20.3 ab	67.5	26.9 a	72.5
Nemacure 10G [®] (2						
	17.5 a	69.1	21.2 a	68.9	26.0 a	71.5
		2'	nd season (2012)			
Check <i>Pp</i> B	7.0 f	-	8.6 g	-	9.3 g	-
3×10 ⁶	10.4 d	32.7	12.9 f	33.3	17.5 e	46.9
6×10 ⁶	11.4 cd	38.6	14.8 ef	42.9	15.9 f	41.5
<i>Pp</i> G						
3×10 ⁶	10.9 d	35.8	14.1 ef	39.0	16.6 ef	44.0
6×10^{6}	12.7 c	44.9	16.7 e	48.5	17.6 e	47.2
PpT						
3×10 ⁶	14.5 bc	51.7	19.1 d	55.0	24.9 d	62.7
6×10^{6}	19.4 a	63.9	23.0 b	62.6	28.1 c	66.9
Mixed <i>Pp</i> isolates			• • •	# 0.0	0 1 - 1	
3×10^{6}	16.3 b	57.1	20.9 c	58.9	31.6 bc	70.6
6×10^{6}	18.9 ab	63.0	26.1 a	67.0	40.4 a	77.0
Nemacure 10G [®] (2	2.5 g/seedling) 20.2 a	65.3	23.4 b	63.2	37.2 b	75.0
	20.2 a	03.3	23.4 D	03.2	37.20	73.0

 Table 4. Effects of three isolates of P. penetrans on growth parameters of peanut plants cv. Giza 6 infected with M. arenaria race 1.

Data presented in Table (5) showed significant increases in number of bacterial nodules on peanut roots during both growing seasons. Treatments with both doses of 3×10^6 and 6×10^6 spore/seedling of mixed *Pp* isolates and *Pp*T alone showed significant increases of 90-92.8%

in bacterial nodules/root system, followed by treatments with both doses of PpB and PpG, which showed 81.4-88.2% in the 1st season. In the 2nd season, treatments with both doses of all Pp isolates showed 90.8-94.8% increase in numbers of bacterial nodules/ root system. On the

other hand, treatment with Nemacure $10G^{\circledast}$ resulted in lowest increases of 6.9-10.6% in number of bacterial nodules/root system in the 1st and 2nd seasons compared with the check treatment. The laboratory examinations for encumbered J₂ recovered from different treatments showed that doses of all *Pp* isolates resulted in a significant differences in number of

endospores adhered to J_2 during both seasons (Table 6). Numbers of adherent endospores on J_2 cuticle were ranged from 3.6-9.4 and 6.2-11.4 endospore/ J_2 in the 1st and 2nd seasons, respectively. The highest numbers of adherent endospores were recorded with mixed P_p isolates in both seasons. High P_p concentrations resulted in the highest numbers of adherent endospores.

	Number of bacterial nodules/root system				
<i>Pp</i> isolates & concentration	1 st sease	on (2011)	2 nd season (2012)		
(spore/seedling)	Total number	Increase (%)	Total number	Increase (%)	
Check	33.5 g	0.0	29.5 f	0.0	
PpB	-				
3×10 ⁶	180.5 f	81.4	320.2 e	90.8	
6×10 ⁶	232.8 d	85.6	331.7 e	91.1	
<i>Pp</i> G					
3×10^{6}	218.7 e	84.7	342.0 de	91.4	
6×10^{6}	284.3 cd	88.2	377.1 d	92.2	
PpT					
3×10^{6}	304.4 cd	90.0	456.8 c	93.5	
6×10^{6}	338.0 c	90.1	497.1 b	94.1	
Mixed Pp isolates					
3×10^{6}	413.9 b	91.9	511.0 b	94.2	
6×10^{6}	470.0 a	92.8	569.5 a	94.8	
Nemacure 10G [®] (2.5 g/s	eedling)				
	36.0 g	6.9	33.0 f	10.6	

Table 6. Effects of *P. penetrans* isolates on number of adherent endospores to encumbered J₂.

<i>Pp</i> isolates and	Number of endospores/J ₂				
concentration (spore/seedling)	1 st season (2011)	2 nd season (2012)			
Check	0.0	0.0			
PpB					
3×10^{6}	3.6 f	6.2 e			
6×10^{6}	4.7 e	6.6 e			
<i>Pp</i> G					
3×10^{6}	4.4 e	6.8 de			
6×10^{6}	5.7 d	7.5 d			
PpT					
3×10^{6}	6.1 d	9.1 c			
6×10^{6}	7.5 с	9.9 b			
Mixed Pp isolates					
3×10^6	8.3 b	10.2 b			
6×10^{6}	9.4 a	11.4 a			

Discussion

The present results indicated that M. arenaria race1 was widespread occurrence in all surveyed peanut areas followed by Tylenchorhynchus, Helicotylenchus, M. javanica and Pratylenchus penetrans. The genera Hemicycliophora, Heterodera and Trichodorus were found in soil samples but with low FO and PD. Meanwhile, Criconema, Criconemella, Heterodera, Hoplolaimus, Trichodorus, Tylenchus and Xiphinema were less common. These findings were agreed with El-Saedy (1975), Cetintas et al., 2003). However, Minton et al., (1969) stated that both M. arenaria and M. javanica cause similar symptoms on peanut. This may resulted in the false assumption that all heavily galled peanut roots, pods and pegs are caused by *M. arenaria*.

Susceptibility of peanut cultivars findings were agreed with Ibrahim & El-Saedy (1976), Hirunsalee et al., (1995), Abdel-Momen & Starr (1997) and Korayam & Bondok (2013). Ibrahim & El-Saedy (1976) tested 9 peanut cvs. to M. javanica infection and showed variable degrees of susceptibility. Abdel-Momen & Starr (1997) found that *M. arenaria* produced greater numbers of eggs than M. javanica on Florunner peanut. However, biocontrol of using three Egyptian isolates findings were in agreement with Chen & Dickson (1998), Kariuki & Dickson (2007) and Timper (2009). Kariuki & Dickson (2007) used dried roots from an infested field site to transfer P. penetrans to another field site. In Egypt, El-Saedy & Mokbel (2007) reported two isolates of P. penetrans parasitizing J_2 of M. incognita and reduced nematode parameters. The bacterium is an obligate parasite of root-knot nematode and not successfully cultivated on artificial media (Chen & Dickson, 1998) and efforts being continued (Hewlett et al., 2004).

The formation and development of nitrogenfixing root nodules is the result of a symbiotic relationship between leguminous plants and soil bacteria collectively called rhizobia, but including more specifically the genera *Azorhizobium*, *Allorhizobium*, *Bradyrhizobium*, *Mesorhizobium*, *Rhizobium* and *Sinorhizobium* (Kinkema *et al.*, 2006). The importance of nodulation and nitrogen fixation to agriculture, natural ecosystems and the global nitrogen cycle are indisputable (Graham & Vance 2003; Oldroyd *et al.*, 2011).

The present data showed a significant increase in number of bacterial nodules formed on peanut root system as a result of Pp isolate treatments, which attack root-knot nematode juveniles. However, numbers of adherent endospores were increased with Pp concentration increased. Rootknot nematodes Meloidogyne spp. reduced nodulation on peanuts (Taha & Raski, 1969; Barker & Hussey, 1976). Masefield (1958) reported that nematode galls on the roots may affect nodulation by causing nutrient deficiency in host plants and by occupying spaces on root system, a reason which was supported later by Malek & Jenkins (1964). Root-knot nematodes, Meloidogyne spp., and other species of plantparasitic nematodes inhibit nodulation and nitrogen fixation in certain legumes (Epps & Chambers, 1962; Malek & Jenkins, 1964). Nodule formation took place either before or after the addition of nematode larvae. However, nematode infection affected number of nodules per plant indirectly by reducing the size of the root system (Taha & Raski, 1969). Robinson (1961) suggested the production of nodules or galls depended on early nodulation started with attack of nematodes.

References

- Abdel-Momen, S.M. & Starr, J.L. 1997. Damage functions for three *Meloidogyne* species on *Arachis hypogaea* in Texas. *Journal of Nematology* 29, 478-483.
- Anonymous. 2011. Agricultural Statistics. Vol. 20. Ministry of Agriculture Land Reclamation, Economic Affairs Sector, Egypt.
- Ayoub, S.M. 1980. *Plant Nematology*: An agricultural training aid. Nema. Aid. Publication, Sacramento, California, USA, 195 pp.

- Barker, K.R. & Hussey, R.S. 1976. Histopathology of nodular tissues of legumes infected with certain nematodes. *Phytopathology* 66, 851-855.
- Cetintas, R., Lima, R.D., Mendes, M.L., Brito, J.A. & Dickson, D.W. 2003. *Meloidogyne javanica* on peanut in Florida. *Journal of Nematology* 35, 433-436.
- Chen, Z.X. & Dickson, D.W. 1998. Review of *Pasteuria penetrans*: Biology, ecology and biological control potential. *Journal of Nematology* 30, 313-340.
- Dickson, D.W. & De Waele, D. 2005. Nematodes parasites of peanut. In: Luc, M., Sikora, R.A.
 & Bridge, J. (Eds.). *Plant-parasitic nematodes in subtropical and tropical agriculture*. CABI Publishing, Wallingford, UK, 393-436 pp.
- El-Saedy, M.A. 1975. Studies on plant-parasitic nematodes on peanut (Arachis hypogaea L.)M. Sc. Thesis, Faculty of Agriculture Alexandria Univirsity Egypt.
- El-Saedy, M.A.M. & Mokbel, A.A. 2007. Control of the root-knot nematode, *Meloidogyne incognita* using two Egyptian isolates of *Pasteuria penetrans*. Egyptian Journal of Phytopathology 35, 125-139.
- Epps, J.M. & Chambers, A.Y. 1962. Nematode inhibits nodules on soybeans. *Crops and Soils* 15, 18.
- Graham, P.H. & Vance, C.P. 2003. Legumes: importance and constraints to greater use. *Plant Physiology* 131, 872-877.
- Hartman. K.M. & Sasser, J.N. 1985. Identification of *Meloidogyne* species on the basis of differential host test and perineal pattern morphology. In: Barker, K.R., Carter, C.C. & Sasser, J.N. (Eds.). An advanced treatise on Meloidogyne. Vol. II. Methodology. North Carolina State Graphics, Raleigh, NC.
- Hewlett, T.E. & Dickson, D.N. 1994. Endospore attachment specificity of *Pasteuria penetrans* from a peanut field in Florida. *Journal of Nematology* 26, 103-104.
- Hewlett, T., Mulrooney, R., Smith, K. & Griswold, S. 2004. Sporulation of *Pasteuria penetrans* in an isolate of *Meloidogyne*

arenaria. Journal of Nematology 36, 322-323.

- Hirunsalee, A., Barker, K.R. & Beute, M.K. 1995. Effects of peanut genotypes on *Meloidogyne* species interactions. *Journal of Nematology* 27, 189-199.
- Hussey, R.S. & Barker, K.R. 1973. A comparison of methods of collecting inocula of *Meloidogyne* spp. including a new technique. *Plant Disease Reporter* 57, 1925-1928.
- Ibrahim, I.K.A. & El-Saedy, M.A. 1976. Development and pathogenesis of *Meloidogyne javanica* in peanut roots. *Nematologia Mediterranea* 4, 231-234.
- Kariuki, G.M. & Dickson, D.W. 2007. Transfer and development of *Pasteuria penetrans*. *Journal of Nematology* 3, 55-61.
- Kinkema, M., Scott, P.T. & Gresshoff, P.M. 2006. Legume nodulation: successful symbiosis through short- and long-distance signalling. *Functional Plant Biology* 33, 707-721.
- Korayem, A.M. & Osman, R.A. 1994. Effect of sulphur and nematicides combination on root- knot nematode, yield and oil content of peanuts. *Bulletin Natural Resources Centre*, *Egypt* 19, 295-300.
- Korayem, A.M. & Bondok, M.M.M.M. 2013. Damage threshold of root-knot nematode, *Meloidogyne arenaria* on peanut in relation to date of planting and irrigation system. *Canadian Journal of Plant Protection* 1, 117-124.
- Mai, W.F. & Lyon, H.H. 1975. *Pictorial key to genera of plant-parasitic nematodes*. 4th Edition. Cornell University Press, Ithaca, 172 pp.
- Malek, R.B. & Jenkins, W.R. 1964. Aspects of the host-parasite relationships of nematodes and hairy vetch. *New Jersey Agriculture Experiment Station Bulletin* No. 813, 31 pp.
- Masefield, G.B. 1958. Some factors affecting nodulation in the tropics. *In*: Hallsworth, E.G. (Ed.). *Nutrition of the legumes*. Academic Press, New York, 202-215 pp.
- Minton, N.A., McGill, J.F. & Golden, A.M. 1969. *Meloidogyne javanica* attacks peanut in Georgia. *Plant Disease Reporter* 53, 668.

- Oldroyd, G.E.D., Murray, J.D., Poole, P.S. & Downie, J.A. 2011. The rules of engagement in the legume-rhizobial symbiosis. *Annual Review of Genetics* 45, 119-144.
- Preston, J.F., Dickson, D.W., Maruniak, J.E., Nong, G., Brito, J.A., Schmidt, L.M. & Giblin-Davis, R.M. 2003. *Pasteuria* spp.: Systematics and phylogeny of these bacterial parasites of phytopathogenic nematodes. *Journal of Nematology* 35, 198-207.
- Robinson, P.E. 1961. Root-knot nematodes and legume nodules. *Nature (London)* 189, 506-507.
- SAS Institute. 1997. SAS software Rel. 6.12, SAS Inst., Cary, NC. USA.
- Stirling, G.R. & White, A.M. 1982. Distribution of parasites of root-knot

nematode in South Australian vineyards. *Plant Disease* 66, 52-53.

- Taha, A.H.Y. & Raski, D.J. 1969. Interrelationships between root nodule bacteria, plant-parasitic nematodes and their leguminous host. *Journal of Nematology* 1, 201-211.
- Taylor, A.L. & Sasser, J.N. 1978. Biology, identification and control of root-knot nematodes (Meloidogyne species). Raleigh, NC, North Carolina State University Graph.
- Timper, P. 2009. Population dynamics of *Meloidogyne arenaria* and *Pasteuria penetrans* in a long-term crop rotation study. *Journal of Nematology* 41, 291-299.
- Wittwer, S.H. 1981. The 20 corps that stand between man and starvation. *Farm Chemicals* 144, 17-28.

(Accepted: 23 April, 2014)